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Information Theory 

Information theory deals with representation and the transfer of information. 
 

There are two fundamentally different ways to transmit messages: via discrete signals 

and via continuous signals ..... For example, the letters of the English alphabet are commonly 

thought of as discrete signals. 

Information sources 

Definition: 

The set of source symbols is called the source alphabet, and the elements of the set are 

called the symbols or letters. 

The number of possible answers ‘ r ’ should be linked to “information.” 

“Information” should be additive in some sense. 

We define the following measure of information: 
 

 

Where ‘ r ’ is the number of all possible outcome so far an do m message U. 

Using this definition we can confirm that it has the wanted property of additivity: 

 

 
The basis ‘b’ of the logarithm b is only a change of units without actually changing the 

amount of information it describes. 

Classification of information sources 
 

1. Discrete memory less. 

2. Memory. 
 

Discrete memory less source (DMS) can be characterized by “the list of the symbols, the 

probability assignment to these symbols, and the specification of the rate of generating these 

symbols by the source”. 

1. Information should be proportion to the uncertainty of an outcome. 

2. Information contained in independent outcome should add. 

Scope of Information Theory 

 

1. Determine the irreducible limit below which a signal cannot be compressed. 

2. Deduce the ultimate transmission rate for reliable communication over a noisy channel. 

3. Define Channel Capacity - the intrinsic ability of a channel to convey information. 
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The basic setup in Information Theory has: 

– a source, 

– a channel and 

– destination. 

The output from source is conveyed through the channel and received at the destination. 

The source is a random variable S 

which takes symbols from a finite alphabet i.e., 

 
S = {s0, s1, s2, ・ ・・, sk−1} 

With probabilities 

P(S = sk) = pk where k = 0, 1, 2, ・ ・・, k − 1 

and 

k−1,Xk=0 ,pk = 1 

 
The following assumptions are made about the source 

 

1. Source generates symbols that are statistically independent. 

2. Source is memory less i.e., the choice of present symbol does not depend on the previous 

choices. 

 

Properties of Information 

 
1. Information conveyed by a deterministic event is nothing 

2. Information is always positive. 

3. Information is never lost. 

4. More information is conveyed by a less probable event than a more probable event 

 
Entropy: 

The Entropy (H(s)) of a source is defined as the average information generated by a 

discrete memory less source. 
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Information content of a symbol: 

Let us consider a discrete memory less source (DMS) denoted by X and having the 

alphabet {U1, U2, U3, ……Um}. The information content of the symbol xi, denoted by I(xi) is 

defined as 

I (U) = log b          = - log b P(U) 

Where P (U) is the probability of occurrence of symbol U 

Units of I(xi): 

For two important and one unimportant special cases of b it has been agreed to use the 

following names for these units: 

b =2(log2): bit, 

b = e (ln): nat (natural logarithm), 

b =10(log10): Hartley. 

The conversation of these units to other units is given as 

 

log2a=  

Uncertainty or Entropy (i.e Average information) 

Definition: 

In order to get the information content of the symbol, the flow information on the 

symbol can fluctuate widely because of randomness involved into the section of symbols. 

The uncertainty or entropy of a discrete random variable (RV) ‘U’ is defined as 

 
H(U)= E[I(u)]= 
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Where PU (·) denotes the probability mass function (PMF) 2 of the RV U, and where 

the support of P U is defined as 

 

 

We will usually neglect to mention “support” when we sum over PU (u) · logb PU (u), i.e., we 

implicitly assume that we exclude all u 

With zero probability PU (u) =0. 
 

Entropy for binary source 

It may be noted that for a binary source U which genets independent symbols 0 and 1 

with equal probability, the source entropy H (u) is 

 

H (u) = -  log2  -   log2     = 1 b/symbol 

Bounds on H (U) 
 

 

 

 
Where 

If U has r possible values, then 0 ≤ H(U) ≤ log r, 

 

 

H(U)=0 if, and only if, PU(u)=1 for some u, 

H(U)=log r if, and only if, PU(u)= 1/r ∀ u. 

Hence, H(U) ≥ 0.Equalitycanonlybeachievedif −PU(u)log2 PU(u)=0 

 

 
 

For all u ∈ supp (PU), i.e., PU (u) =1forall u ∈ supp (PU). 
 

To derive the upper bound we use at rick that is quite common in. 
 

Formation theory: We take the deference and try to show that it must be non positive. 
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Equality can only be achieved if 
 

1. In the IT Inequality ξ =1,i.e.,if 1r·PU(u)=1=⇒ PU(u)= 1r ,for all u; 

2. |supp (PU)| = r. 

 

Note that if Condition1 is satisfied, Condition 2 is also satisfied. 
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Conditional Entropy 

Similar to probability of random vectors, there is nothing really new about conditional 

probabilities given that a particular event Y = y has occurred. 

The conditional entropy or conditional uncertainty of the RV X given the event Y = y is 

defined as 

 

 

Note that the definition is identical to before apart from that everything is conditioned 

on the event Y = y 

 

 
Note that the conditional entropy given the event Y = y is a function of y. Since Y is 

also a RV, we can now average over all possible events Y = y according to the probabilities 

of each event. This will lead to the averaged. 

Mutual Information 

Although conditional entropy can tell us when two variables are completely 

independent, it is not an adequate measure of dependence. A small value for H(Y| X) may 

implies that X tells us a great deal about Y or that H(Y) is small to begin with. Thus, we 

measure dependence using mutual information: 

I(X,Y) =H(Y)–H(Y|X) 
 

Mutual information is a measure of the reduction of randomness of a variable given 

knowledge of another variable. Using properties of logarithms, we can derive several equiva- 

lent definitions 
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I(X,Y)=H(X)–H(X| Y) 

 
I(X,Y) = H(X)+H(Y)–H(X,Y) = I(Y,X) 

 

 
In addition to the definitions above, it is useful to realize that mutual information is a 

particular case of the Kullback-Leibler divergence. The KL divergence is defined as: 

 

KL divergence measures the difference between two distributions. It is sometimes called the 

relative entropy. It is always non-negative and zero only when p=q; however, it is not a 

distance because it is not symmetric. 

In terms of KL divergence, mutual information is: 
 

In other words, mutual information is a measure of the difference between the joint 

probability and product of the individual probabilities. These two distributions are equivalent 

only when X and Y are independent, and diverge as X and Y become more dependent. 

Source coding 

Coding theory is the study of the properties of codes and their respective fitness for 

specific applications. Codes are used for data compression, cryptography, error- 

correction, and networking. Codes are studied by various scientific disciplines—such as 

information theory, electrical engineering, mathematics, linguistics, and computer 

science—for the purpose of designing efficient and reliable data transmission methods. 

This typically involves the removal of redundancy and the correction or detection of 

errors in the transmitted data. 

The aim of source coding is to take the source data and make it smaller. 

 
All source models in information theory may be viewed as random process or random 

sequence models. Let us consider the example of a discrete memory less source 

(DMS), which is a simple random sequence model. 

A DMS is a source whose output is a sequence of letters such that each letter is 

independently selected from a fixed alphabet consisting of letters; say a1, a2 , 
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……….ak. The letters in the source output sequence are assumed to be   random 

and statistically 

Independent of each other. A fixed probability assignment for the occurrence   of 

each letter is also assumed. Let us, consider a small example to appreciate the 

importance of probability assignment of the source letters. 

 
Let us consider a source with four letters a1, a2, a3 and a4 with P(a1)=0.5, 

P(a2)=0.25, P(a3)= 0.13, P(a4)=0.12. Let us decide to go for binary coding of these 

four 

Source letters While this can be done in multiple ways, two encoded representations 
are shown below: 

 
Code Representation#1: 

 

a1: 00, a2:01, a3:10, a4:11 

 

 
Code Representation#2: 

 

a1: 0, a2:10, a3:001, a4:110 

It is easy to see that in method #1 the probability assignment of a source letter has not 

been considered and all letters have been represented by two bits each. However in 

The second method only a1 has been encoded in one bit, a2 in two bits and the 

remaining two in three bits. It is easy to see that the average number of bits to be used 

per source letter for the two methods is not the same. ( a for method #1=2 bits per 

letter and a for method #2 < 2 bits per letter). So, if we consider the issue of encoding 

a long sequence of 

Letters we have to transmit less number of bits following the second method.   This 

is an important aspect of source coding operation in general. At this point, let us 

note 

a) We observe that assignment of small number of bits to more probable letters and 

assignment of larger number of bits to less probable letters (or symbols) may lead to 

efficient source encoding scheme. 
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b) However, one has to take additional care while transmitting the encoded letters. A 

careful inspection of the binary representation of the symbols in method #2 reveals 

that it may lead to confusion (at the decoder end) in deciding the end of binary 

representation of a letter and beginning of the subsequent letter. 

So a source-encoding scheme should ensure that 

1) The average number of coded bits (or letters in general) required per source letter 

is as small as possible and 

2) The source letters can be fully retrieved from a received encoded sequence. 
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Shannon-Fano Code 

 
 

Shannon–Fano coding, named after Claude Elwood Shannon and Robert Fano, is a technique 

for constructing a prefix code based on a set of symbols and their probabilities. It is 

suboptimal in the sense that it does not achieve the lowest possible expected codeword length 

like Huffman coding; however unlike Huffman coding, it does guarantee that all codeword 

lengths are within one bit of their theoretical ideal I(x) =−log P(x). 

In Shannon–Fano coding, the symbols are arranged in order from most probable to least 

probable, and then divided into two sets whose total probabilities are as close as possible to 

being equal. All symbols then have the first digits of their codes assigned; symbols in the first 

set receive "0" and symbols in the second set receive "1". As long as any sets with more than 

one member remain, the same process is repeated on those sets, to determine successive 

digits of their codes. When a set has been reduced to one symbol, of course, this means the 

symbol's code is complete and will not form the prefix of any other symbol's code. 

The algorithm works, and it produces fairly efficient variable-length encodings; when the two 

smaller sets produced by a partitioning are in fact of equal probability, the one bit of 

information used to distinguish them is used most efficiently. Unfortunately, Shannon–Fano 

does not always produce optimal prefix codes. 

For this reason, Shannon–Fano is almost never used; Huffman coding is almost as 

computationally simple and produces prefix codes that always achieve the lowest expected 

code word length. Shannon–Fano coding  is used  in the IMPLODE compression method, 

which is part of the ZIP file format, where it is desired to apply a simple algorithm with high 

performance and minimum requirements for programming. 
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Shannon-Fano Algorithm: 

A Shannon–Fano tree is built according to a specification designed to define an 

effective code table. The actual algorithm is simple: 

For a given list of symbols, develop a corresponding list of probabilities or frequency 

counts so that each symbol’s relative frequency of occurrence is known. 

 
Sort the lists of symbols according to frequency, with the most frequently 

occurring 

Symbols at the left and the least common at the right. 

Divide the list into two parts, with the total frequency counts of the left part being 

as 

Close to the total of the right as possible. 

The left part of the list is assigned the binary digit 0, and the right part is assigned 

the digit 1. This means that the codes for the symbols in the first part will all start 

with 0, and the codes in the second part will all start with 1. 

Recursively apply the steps 3 and 4 to each of the two halves, subdividing groups 

and adding bits to the codes until each symbol has become a corresponding code leaf 

on the tree. 

Example: 

The source of information A generates the symbols {A0, A1, A2, A3 and A4} with the 

corresponding probabilities {0.4, 0.3, 0.15, 0.1 and 0.05}. Encoding the source symbols 

using binary encoder and Shannon-Fano encoder gives 

 

Source Symbol Pi Binary Code Shannon-Fano 

A0 0.4 000 0 

A1 0.3 001 10 

A2 0.15 010 110 

A3 0.1 011 1110 

A4 0.05 100 1111 

Lavg H = 2.0087 3 2.05 
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Shanon-Fano code is a top-down approach. Constructing the code tree, we get 
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Binary Huffman Coding (an optimum variable-length source coding scheme) 

In Binary Huffman Coding each source letter is converted into a   binary   code 

word. It is a prefix condition code ensuring minimum average length per source letter in 

bits. 

Let the source letters a1, a 2, ……….aK have probabilities P(a1), P(a2),…………. 

P(aK) and let us assume that P(a1) ≥ P(a2) ≥ P(a 3)≥…. ≥ P(aK). 

 

We now consider a simple example to illustrate the steps for Huffman coding. 

 
Steps to calculate Huffman Coding 

 
Example Let us consider a discrete memory less source with six letters having 

P(a1)=0.3,P(a2)=0.2, P(a 3)=0.15, P(a 4)=0.15, P(a5)=0.12 and P(a6)=0.08. 

Arrange the letters in descending order of their probability (here they are 

arranged). 

Consider the last two probabilities. Tie up the last two probabilities. Assign, say, 0 

to the last digit of representation for the least probable letter (a6) and 1 to the last 

digit of representation for the second least probable letter (a5). That is, assign ‘1’ 

to   the    upper    arm    of    the    tree    and    ‘0’    to    the    lower    arm. 

 

(3) Now, add the two probabilities and imagine a new letter, say b1, substituting for a6 

and a5. So P(b1) =0.2. Check whether a4 and b1are the least likely letters. If not, 

reorder the letters as per Step#1 and add the probabilities of two least likely letters. 

For our example, it leads to: 

P(a1)=0.3, P(a2)=0.2, P(b1)=0.2, P(a3)=0.15 and P(a4)=0.15 
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(4) Now go to Step#2 and start with the reduced ensemble consisting of a1 , a2 , a3 , 

 

a4 and b1. Our example results in: 

Here we imagine another letter b1, with P(b2)=0.3. 

 

Continue till the first digits of the most reduced ensemble of two letters are 

assigned a ‘1’ and a ‘0’. 

Again go back to the step (2): P(a1)=0.3, P(b2)=0.3, P(a2)=0.2 and P(b1)=0.2. 

Now we consider the last two probabilities: 
 
 

So, P(b3)=0.4. Following Step#2 again, we get, P(b3)=0.4, P(a1)=0.3 and 

P(b2)=0.3. 

Next two probabilities lead to: 
 

 
 

 

 

 
With P(b4) = 0.6. Finally we get only two probabilities 
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6. Now, read the code tree inward, starting   from the root,   and construct the 

code words. The first digit of a codeword appears first while reading the code tree 

inward. 

 
Hence, the final representation is: a1=11, a2=01, a3=101, a4=100, a5=001, a6=000. 

A few observations on the preceding example 

 
1. The event with maximum probability has least number of bits 

 
 

2. Prefix condition is satisfied. No representation of one letter is prefix for other. 

Prefix condition says that representation of any letter should not be a part of any 

other letter. 

3. Average length/letter (in bits) after coding is 

 

= ∑P (ai )ni = 2.5 bits/letter. 

 
4.  Note that the entropy of the source is: H(X)=2.465 bits/symbol.   Average length 

per source letter after Huffman coding is a little bit more but close to the source 

entropy. In fact, the following celebrated theorem due to C. E. Shannon sets the 

limiting value of average length of code words from a DMS. 

 
Shannon–Hartley theorem 

 

In information theory, the Shannon–Hartley theorem tells the maximum rate at which 

information can be transmitted over a communications channel of a specified bandwidth in 

the presence of noise. It is an application of the noisy-channel coding theorem to the 

archetypal case of a continuous-time analog communications channel subject to Gaussian 

noise. The theorem establishes Shannon's channel capacity for such a communication link, a 
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bound on the maximum amount of error-free information per time unit that can be transmitted 

with a specified bandwidth in the presence of the noise interference, assuming that the signal 

power is bounded, and that the Gaussian noise process is characterized by a known power or 

power spectral density. 

The law is named after Claude Shannon and Ralph Hartley. 

 
 

Hartley Shannon Law 

The theory behind designing and analyzing channel codes is called Shannon’s noisy 

channel coding theorem. It puts an upper limit on the amount of information you can 

send in a noisy channel using a perfect channel code. This is given by the following 

equation: 

 

 

where C is the upper bound on the capacity of the channel (bit/s), B is the 

bandwidth of the channel (Hz) and SNR is the Signal-to-Noise ratio (unit less). 

Bandwidth-S/N Tradeoff 

The expression of the channel capacity of the Gaussian channel makes intuitive 

sense: 

1. As the bandwidth of the channel increases, it is possible to make faster 

changes in the information signal, thereby increasing the information rate. 

2 As S/N increases, one can increase the information rate while still preventing errors 

due to noise. 

3. For no noise, S/N tends to infinity and an infinite information rate is 

possible irrespective of bandwidth. 

Thus we may trade off bandwidth for SNR. For example, if S/N = 7 and B = 4kHz, 

then the channel capacity is C = 12 ×103 bits/s. If the SNR increases to S/N = 15 and B 

is decreased to 3kHz, the channel capacity remains the same.   However, as B tends to 

1, the channel capacity does not become infinite since, with an increase in bandwidth, 

the noise power also increases. If the noise power spectral density is ɳ/2, then the total 

noise power is N = ɳB, so the Shannon-Hartley law becomes 
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Encoder 

Linear Block Codes 
 

Introduction 

Coding     theory     is      concerned      with      the      transmission      of      data 

across noisy channels and the recovery of corrupted messages. It   has   found 

widespread   applications   in   electrical   engineering,   digital    communication, 

mathematics and computer science. The transmission of the data over the channel depends 

upon two parameters. They are transmitted power and channel bandwidth. The power spectral 

density of channel noise and these two parameters determine signal to noise power ratio. 

The signal to noise power ratio determine the probability of error of the modulation 

scheme. Errors are introduced in the data when it passes through the channel. The channel 

noise interferes the signal. The signal power is reduced. For the given signal to noise ratio, the 

error probability can be reduced further by using coding techniques. The coding techniques 

also reduce signal to noise power ratio for fixed probability of error. 

Principle of block coding 

For the block of k message bits, (n-k) parity bits or check bits are added. Hence the 

total bits at the output of channel encoder are ‘n’. Such codes are called (n,k)block 

codes.Figure illustrates this concept. 

Message block Code block 
 

input output 
 

 

 

Message Check bits 

    

k (n-k) 
n bits 

 
 

Figure: Functional block diagram of block coder 
 

Types are 

Systematic codes: 

In the systematic block code, the message bits appear at the beginning of the code 

word. The message appears first and then check bits are transmitted in a block. This type of 

code is called systematic code. 

Nonsystematic codes: 

In the nonsystematic block code it is not possible to identify the message bits and 

check bits. They are mixed in the block. 

k bits 

Message 



2 
 

Consider the binary codes and all the transmitted digits are binary. 
 

Linear Block Codes 
 

A code is linear if the sum of any two code vectors produces another code vector. 

This shows that any code vector can be expressed as a linear combination of other code 

vectors. Consider that the particular code vector consists of m1,m2, m3,…mk message bits and 

c1,c2,c3…cq check bits. Then this code vector can be written as, 

X=(m1,m2,m3,…mkc1,c2,c3…cq) 

Here q=n-k 

Whereq are the number of redundant bits added by the encoder. 

Code vector can also be written as 

X=(M/C) 
 

Where M= k-bit message vector 

C= q-bit check vector 

The main aim of linear block code is to generate check bits and this check bits are 

mainly used for error detection and correction. 

Example : 
 

The (7, 4) linear code has the following matrix as a generator matrix 
 

 

If u = (1 1 0 1) is the message to be encoded, its corresponding code word would be 

A linear systematic (n, k) code is completely specified by ak × n matrix G of the 

following form 
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Let u = (u0, u1, … , uk-1) be the message to be encoded.The corresponding code word 

is 

 

 

The components of v are 

 

 

 

 

The n – k equations given by above equation are called parity-check equations of the 

code 
 

Example for Codeword 

The matrix G given by 
 

 

Let u = (u0, u1, u2, u3) be the message to be encoded and v = (v0, v1, v2, v3, v4, v5,v6) be 

the corresponding code word 
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Solution : 

 
By matrix multiplication, the digits of the code word v can be determined. 

 

 

 
 

 

If the generator matrix of an (n, k) linear code is in systematic form, the parity-check 

matrix may take the following form 

 

 

Encoding circuit for a linear systematic (n,k) code is shown below. 
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Figure: Encoding Circuit 
 

For the block of k=4 message bits, (n-k) parity bits or check bits are added. Hence 

the total bits at the output of channel encoder are n=7. The encoding circuit for (7, 4) 

systematic code is shown below. 
 

Figure: Encoding Circuit for (7,4) code 

 

 

Syndrome and Error Detection 
 

Let v = (v0, v1, …, vn-1) be a code word that was transmitted over a noisy channel. Let 

r = (r0, r1, …, rn-1) be the received vector at the outputof the channel 
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Where 
 

e = r + v = (e0, e1, …, en-1) is an n-tuple and the n-tuple ‘e’ is called the 

error vector (or error pattern).The condition is 

ei = 1 for ri ≠ vi 

ei = 0 for ri = vi 

Upon receiving r, the decoder must first determine whether r contains transmission 

errors. If the presence of errors is detected, the decoder will take actions to locate the errors, 

correct errors (FEC) and request for a retransmission of v. 

When r is received, the decoder computes the following (n – k)-tuple. 

s = r • HT 

s = (s0, s1, …, sn-k-1) 

where s is called the syndrome of r. 

The syndrome is not a function of the transmitted codeword but a function of error 

pattern. So we can construct only a matrix of all possible error patterns with corresponding 

syndrome. 

When s = 0, if and only if r is a code word and hence receiver accepts r as the 

transmitted code word. When s≠ 0, if and only if r is not a code word and hence the presence 

of errors has been detected. When the error pattern e is identical to a nonzero code word (i.e., 

r contain errors but s = r • HT = 0), error patterns of this kind are called undetectable error 

patterns. Since there are 2k – 1 non-zero code words, there are 2k – 1 undetectable error 

patterns. The syndrome digits are as follows: 

s0 = r0 + rn-k p00 + rn-k+1 p10 + ··· + rn-1 pk-1,0 

s1 = r1 + rn-k p01 + rn-k+1 p11 + ··· + rn-1 pk-1,1 

. 

sn-k-1 = rn-k-1 + rn-k p0,n-k-1 + rn-k+1 p1,n-k-1 + ··· + rn-1 pk-1,n-k-1 

 

The syndrome s is the vector sum of the received parity digits (r0,r1,…,rn-k-1) and the parity- 

check digits recomputed from the received information digits (rn-k,rn-k+1,…,rn-1). 

The below figure shows the syndrome circuit for a linear systematic (n, k) code. 
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Figure: Syndrome Circuit 
 

Error detection and error correction capabilities of linear block codes: 
 

If the minimum distance of a block code C is dmin, any two distinct code vector of C 

differ in at least dmin places. A block code with minimum distance dmin is capable of detecting 

all the error pattern of dmin– 1 or fewer errors. 

However, it cannot detect all the error pattern of dmin errors because there exists at least 

one pair of code vectors that differ in dmin places and there is an error pattern of dmin errors 

that will carry one into the other. The random-error-detecting capability of a block code with 

minimum distance dmin is dmin– 1. 

An (n, k) linear code is capable of detecting 2n – 2k error patterns of length n 

Among the 2n – 1 possible non zero error patterns, there are 2k – 1 error patterns that are 

identical to the 2k – 1 non zero code words. If any of these 2k – 1 error patterns occurs, it 

alters the transmitted code word v into another code word w, thus w will be received and its 

syndrome is zero. 

If an error pattern is not identical to a nonzero code word, the received vector r will 

not be a code word and the syndrome will not be zero. 

Hamming Codes: 

These codes and their variations have been widely used for error control 

in digital communication and data storage systems. 

For any positive integer m ≥ 3, there exists a Hamming code with the following parameters: 

Code length: n = 2m – 1 

Number of information symbols: k = 2m – m – 1 

Number of parity-check symbols: n – k = m 

Error-correcting capability: t = 1(dmin= 3) 
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The parity-check matrix H of this code consists of all the non zero m-tuple as its columns 

(2m-1) 
 

In systematic form, the columns of H are arranged in the following form 

H = [Im Q] 
where Im is an m × m identity matrix 

The sub matrix Q consists of 2m – m – 1 columns which are the m-tuples of weight 2 or 

more. The columns of Q may be arranged in any order without affecting the distance property 

and weight distribution of the code. 

In systematic form, the generator matrix of the code is 
 

G = [QT I2m–m–1] 

where QT is the transpose of Q and I 2m–m–1 is an (2m – m – 1) ×(2m – m – 1) 

identity matrix. 

Since the columns of H are nonzero and distinct, no two columns add to zero. Since H 

consists of all the nonzero m-tuples as its columns, the vector sum of any two columns, say hi 

and hj, must also be a column in H, say hlhi+ hj+ hl = 0.The minimum distance of a Hamming 

code is exactly 3. 

Using H' as a parity-check matrix, a shortened Hamming code can be obtained with 

the following parameters : 

Code length: n = 2m – l – 1 

Number of information symbols: k = 2m – m – l – 1 

Number of parity-check symbols: n – k = m 

Minimum distance : dmin ≥ 3 

When a single error occurs during the transmission of a code vector, the resultant 

syndrome is nonzero and it contains an odd number of 1’s (e x H’T corresponds to a column 

in H’).When double errors occurs, the syndrome is nonzero, but it contains even number of 

1’s. 

Decoding can be accomplished in the following manner: 

i) If the syndrome s is zero, we assume that no error occurred 

ii) If s is nonzero and it contains odd number of 1’s, assume that a single error 

occurred. The error pattern of a single error that corresponds to s is added to the received 

vector for error correction. 

iii) If s is nonzero and it contains even number of 1’s, an uncorrectable error 

pattern has been detected. 
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Problems: 

1. 
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Binary Cyclic codes: 

Cyclic codes are the sub class of linear block codes. 

Cyclic codes can be in systematic or non systematic form. 

Definition: 

A linear code is called a cyclic code if every cyclic shift of the code vector produces 

some other code vector. 

Properties of cyclic codes: 

(i) Linearity (ii) Cyclic 

 

 

Linearity: This property states that sum of any two code words is also a valid code word. 
 

X1+X2=X3 

 

Cyclic: Every cyclic shift of valid code vector produces another valid code vector. 
 

Consider an n-bit code vector 
 

X = {xn-1,xn-2, ......................... x1,x0} 
 

Here xn-1, xn-2 ….x1, x0 represent individual bits of the code vector ‘X’. 
 

If the above code vector is cyclically shifted to left side i.e., One cyclic shift of X gives, 
 

X’= {xn-2 ….x1, x0, xn-1} 

Every bit is shifted to left by one position. 

Algebraic Structures of Cyclic Codes: 

The code words can be represented by a polynomial. For example consider the n-bit code 

word X = {xn-1,xn-2, ........................ x1,x0}. 
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This code word can be represented by a polynomial of degree less than or equal to (n-1) 

i.e., 
 

X(p)=xn-1p
n-1+xn-2p

n-2+ ....................... +x1p+x0 

Here X(p) is the polynomial of degree (n-1) 

p- Arbitrary variable of the polynomial 

The power of p represents the positions of the codeword bits i.e., 

pn-1 – MSB 

p0 -- LSB 

p -- Second bit from LSB side 
 

Polynomial representation due to the following reasons 
 

(i) These are algebraic codes, algebraic operations such as addition, 

multiplication, division, subtraction etc becomes very simple. 

(ii) Positions of the bits are represented with help of powers of p in a 

polynomial. 

Generation of code words in Non-systematic form: 
 

Let M= {mk-1, mk-2, ........................ m1,m0} be ‘k’ bits of message vector. Then it can be 

represented by the polynomial as, 
 

M(p)=mk-1p
k-1+mk-2p

k-2+ ....................... +m1p+m0 

Let X(p) be the code word polynomial 

X(p)=M(p)G(p) 

G(p) is the generating polynomial of degree ‘q’ 
 

For (n,k) cyclic codes, q=n-k represent the number of parity bits. 

The generating polynomial is given as 

G(p)= pq+gq-1p
q-1+ ................. +g1p+1 

Where gq-1, gq-2, ............................... g1 are the parity bits. 
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𝑀(𝑝) 

 

If M1, M2, M3....................................etc are the other message vectors, then the corresponding 

code vectors can be calculated as 
 

X1(p) =M1 (p) G (p) 

X2(p) =M2 (p) G (p) 
 

X3(p) =M3 (p) G (p) 
 

Generation of Code vectors in systematic form: 
 

X = (k message bits : (n-k) check bits) = (mk-1,mk-2, ..................... m1,m0 : cq-1,cq- 

2, ................ c1,c0) 
 

C (p) = cq-1p
q-1+cq-2p

q-2+.................. +c1p+c0 

The check bit polynomial is obtained by 

𝑞 

C(p)= rem [ 𝑝 ] 
𝐺(𝑝) 

 

Generator and Parity Check Matrices of cyclic codes: 
 

Non systematic form of generator matrix: 

Since cyclic codes are sub class of linear block codes, generator and parity check matrices 

can also be defined for cyclic codes. 

The generator matrix has the size of k x n. 

Let generator polynomial given by equation 

G(p)= pq+gq-1p
q-1+ ................. +g1p+1 

Multiply both sides of this polynomial by pi i.e., 

pi G(p) = pi+q+gq-1p
i+q-1…………….+g1p

i+1+pi and i=(k-1),(k-2), .................. 2,1,0 

Systematic form of generator matrix: 

Systematic form of generator matrix is given by 
 

G= [Ik : Pkxq]kxn 

 

The tth row of this matrix will be represented in the polynomial form as follows 

tth row of G = pn-t + Rt(p) 
 

Where t= 1, 2, 3 ................ k 
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Lets divide pn-t by a generator matrix G(p). Then we express the result of this division in 

terms of quotient and remainder i.e., 
 

𝑝𝑛−𝑡 

𝐺(𝑝) 
= 𝑄𝑢𝑜𝑡𝑖𝑒𝑛𝑡 + 

𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 
 

 

𝐺(𝑝) 
 

Here remainder will be a polynomial of degree less than q, since the degree of G(p) is ‘q’. 

The degree of quotient will depend upon value of t 

Lets represent Remainder = Rt(p) 

Quotient = Qt(p) 

 
 

𝑝𝑛−𝑡 𝑅𝑡(𝑝) 
= 𝑄 (𝑝) + 

 
 

𝐺(𝑝) 𝑡 𝐺(𝑝) 
 
 

 

𝑝𝑛−𝑡 = 𝑄𝑡(𝑝)𝐺(𝑝) + 𝑅𝑡(𝑝) 

And t= 1,2, ..................... k 
 

 

 

𝑝𝑛−𝑡 + 𝑅𝑡(𝑝) = 𝑄𝑡(𝑝)𝐺(𝑝) 

Represents tth row of systematic generator matrix 

Parity check matrix H = [PT : Iq]qxn 

Encoding using an (n-k) Bit Shift Register: 

The feedback switch is first closed. The output switch is connected to message input. 

All the shift registers are initialized to zero state. The ‘k’ message bits are shifted to the 

transmitter as well as shifted to the registers. 
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After the shift of ‘k’ message bits the registers contain ‘q’ check bits. The feedback 

switch is now opened and output switch is connected to check bits position. With the every 

shift, the check bits are then shifted to the transmitter. 

The block diagram performs the division operation and generates the remainder. 

Remainder is stored in the shift register after all message bits are shifted out. 

Syndrome Decoding, Error Detection and Error Correction: 

In cyclic codes also during transmission some errors may occur. Syndrome decoding can 

be used to correct those errors. 

Lets represent the received code vector by Y. 
 

If ‘E’ represents the error vector then the correct code vector can be obtained as 
 

X=Y+E or Y=X+E 

In the polynomial form we can write above equation as 
 

Y(p) = X(p)+E(p) 
 

X(p) = M(p)G(p) 
 

Y(p)= M(p)G(p) + E(p) 
 

 

 

 
If Y(p)=X(p) 

𝑌(𝑝) 

𝐺(𝑝) 
= 𝑄𝑢𝑜𝑡𝑖𝑒𝑛𝑡 + 

 

𝑋(𝑝) 

𝐺(𝑝) 
= 𝑄𝑢𝑜𝑡𝑖𝑒𝑛𝑡 + 

𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 
 

 

𝐺(𝑝) 
 
 

𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 
 

 

𝐺(𝑝) 
 
 
 
 

𝑌(𝑝) 𝑅(𝑝) 

𝐺(𝑝) 
= 𝑄(𝑝) + 

𝐺(𝑝) 

 

Y(p)=Q(p)G(p) + R(p) 
 

Clearly R(p) will be the polynomial of degree less than or equal to q-1 
 

Y (p) =Q (p) G (p) +R (p) 

M(p)G(p)+E(p)=Q(p)G(p)+R(p) 

E(p)=M(p)G(p)+Q(p)G(p)+ R(p) 
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E(p)=[M(p)+Q(p)]G(p)+R(p) 
 

This equation shows that for a fixed message vector and generator polynomial, an 

error pattern or error vector ‘E’ depends on remainder R. 

For every remainder ‘R’ there will be specific error vector. Therefore we can call the 

remainder vector ‘R’ as syndrome vector ‘S’, or R(p)=S(p). Therefore 

𝑌(𝑝) 𝑆(𝑝) 

𝐺(𝑝) 
= 𝑄(𝑝) + 

𝐺(𝑝) 

Thus Syndrome vector is obtained by dividing received vector Y (p) by G (p) i.e., 

𝑌(𝑝) 
𝑆(𝑝) = 𝑟𝑒𝑚[ ] 

𝐺(𝑝) 
 

Block Diagram of Syndrome Calculator: 
 

 

There are ‘q’ stage shift register to generate ‘q’ bit syndrome vector. Initially all the 

shift register contents are zero & the switch is closed in position 1. 

The received vector Y is shifted bit by bit into the shift register. The contents of flip 

flops keep changing according to input bits of Y and values of g1,g2 etc. 

After all the bits of Y are shifted, the ‘q’ flip flops of shift register contain the q bit 

syndrome vector. The switch is then closed to position 2 & clocks are applied to shift register. 

The output is a syndrome vector S= (Sq-1, Sq-2 ….S1, S0) 

Decoder of Cyclic Codes: 

Once the syndrome is calculated, then an error pattern is detected for that particular 

syndrome. When the error vector is added to the received code vector Y, then it gives 

corrected code vector at the output. 
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The switch named Sout is opened and Sin is closed. The bits of the received vector Y 

are shifted into the buffer register as well as they are shifted in to the syndrome calculator. 

When all the n bits of the received vector Y are shifted into the buffer register and Syndrome 

calculator the syndrome register holds a syndrome vector. 

Syndrome vector is given to the error pattern detector. A particular syndrome detects 

a specific error pattern. 

Sin is opened and Sout is closed. Shifts are then applied to the flip flop of buffer 

registers, error register, and syndrome register. 

The error pattern is then added bit by bit to the received vector. The output is the 

corrected error free vector. 
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Convolution codes 
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Decoding methods of Convolution code: 
 

1.Veterbi decoding 

2.Sequential decoding 

3.Feedback decoding 

Veterbi algorithm for decoding of convolution codes(maximam likelihood decoding): 

Let represent the received signal by y. 

Convolutional encoding operates continuously on input data 

Hence there areno code vectorsand blocks such as. 

Metric:it is the discrepancybetwen the received signal y and the decoding signal at 

particular node .this metric can be added over few nodes a particular path 

Surviving path: this is the path of the decoded signalwith minimum metric 

In veterbi decoding ametric isassigned to each surviving path 

Metric of the particular is obtained by adding individual metric on the nodes along that 

path. 

Y is decoded as the surviving path with smallest metric. 

Example: 
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Exe: 

 
 


